Shear wave speed dispersion and attenuation in granular marine sediments.

نویسنده

  • Masao Kimura
چکیده

The reported compressional wave speed dispersion and attenuation could be explained by a modified gap stiffness model incorporated into the Biot model (the BIMGS model). In contrast, shear wave speed dispersion and attenuation have not been investigated in detail. No measurements of shear wave speed dispersion have been reported, and only Brunson's data provide the frequency characteristics of shear wave attenuation. In this study, Brunson's attenuation measurements are compared to predictions using the Biot-Stoll model and the BIMGS model. It is shown that the BIMGS model accurately predicts the frequency dependence of shear wave attenuation. Then, the shear wave speed dispersion and attenuation in water-saturated silica sand are measured in the frequency range of 4-20 kHz. The vertical stress applied to the sample is 17.6 kPa. The temperature of the sample is set to be 5 °C, 20 °C, and 35 °C in order to change the relaxation frequency in the BIMGS model. The measured results are compared with those calculated using the Biot-Stoll model and the BIMGS model. It is shown that the shear wave speed dispersion and attenuation are predicted accurately by using the BIMGS model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grain-size dependence of shear wave speed dispersion and attenuation in granular marine sediments.

The author has shown that measured shear wave speed dispersion and attenuation in water-saturated silica sand can be predicted by using a gap stiffness model incorporated into the Biot model (the BIMGS model) [Kimura, J. Acoust. Soc. Am. 134, 144-155 (2013)]. In this study, the grain-size dependence of shear wave speed dispersion and attenuation in four kinds of water-saturated silica sands wit...

متن کامل

Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments

A unified theory of sound propagation in saturated marine sediments is developed on the basis of a linear wave equation, which includes a new dissipation term representing internal losses arising from interparticle contacts. This loss mechanism, which shows a ‘‘memory’’ or hysteresis, is proposed as being responsible for the acoustic properties of sediments. To accommodate the memory, the loss ...

متن کامل

Compressional and shear wave properties of marine sediments: comparisons between theory and data.

According to a recently developed theory of wave propagation in marine sediments, the dispersion relationships for the phase speed and attenuation of the compressional and the shear wave depend on only three macroscopic physical variables: porosity, grain size, and depth in the sediment. The dispersion relations also involve three (real) parameters, assigned fixed values, representing microscop...

متن کامل

Determination of sediments diameter using acoustic waves

The use of acoustic waves in researches related to sea water is of most importance among scientists recently. Since these waves are the only waves, transmitted in water with lowest attenuation and high speed, they can be used in many scientific fields. The main goal of this research is to better understand the physics and mechanisms of sound-seabed interaction, including acoustic penetration, p...

متن کامل

Theory of compressional and transverse wave propagation in consolidated porous media

A theory of compressional and shear wave propagation in consolidated porous media ~rocks! is developed by extending ideas already introduced in connection with unconsolidated marine sediments. The consolidated material is treated as an elastic medium which exhibits a specific form of stress relaxation associated with grain boundaries and microcracks. The stress relaxation, which is linear in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 134 1  شماره 

صفحات  -

تاریخ انتشار 2013